Wednesday, February 12

Here is A quick Means To resolve A problem with Deepseek

Chinesisches KI-Startup DeepSeek erreicht bedeutende ... DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 그래서, DeepSeek 팀은 이런 근본적인 문제들을 해결하기 위한 자기들만의 접근법, 전략을 개발하면서 혁신을 한층 가속화하기 시작합니다. If DeepSeek could, they’d fortunately prepare on more GPUs concurrently. Furthermore, the company’s commitments to prospects are to supply more than 98% search relevance/accuracy, 30% enchancment in conversions for specific searches, and 80% discount in ‘NO’ consequence or ‘Bad’ result pages. “What to scale” is the new query, which implies there are all the new S curves in entrance of us to climb. The CoT reasoning is working; even if it isn’t native, there is definitely a boost in efficiency. Similarly, DeepSeek-V3 showcases exceptional performance on AlpacaEval 2.0, outperforming both closed-supply and open-source models. A promising route is the use of massive language fashions (LLM), which have proven to have good reasoning capabilities when educated on massive corpora of text and math. Advancements in Code Understanding: The researchers have developed techniques to enhance the model’s capacity to comprehend and purpose about code, ديب سيك enabling it to higher understand the construction, semantics, and logical stream of programming languages. My analysis mainly focuses on natural language processing and code intelligence to enable computer systems to intelligently process, understand and generate each natural language and programming language.

In response to Forbes, DeepSeek’s edge might lie in the truth that it is funded only by High-Flyer, a hedge fund also run by Wenfeng, which provides the corporate a funding model that helps fast progress and research. ChatGPT’s transformer model offers versatility across a broad range of duties however could also be less efficient in resource utilization. The company started creating AI models in 2023, shortly after ChatGPT’s launch ushered in a world AI boom. FP8-LM: Training FP8 giant language fashions. Training information: DeepSeek was skilled on 14.Eight trillion pieces of data referred to as tokens. So that you flip the info into all sorts of question and answer formats, graphs, tables, pictures, god forbid podcasts, combine with other sources and augment them, you may create a formidable dataset with this, and never just for pretraining however across the training spectrum, particularly with a frontier mannequin or inference time scaling (using the prevailing fashions to think for longer and generating higher information). The minimalist design ensures a litter-free expertise-just kind your question and get prompt answers.

Why that is so spectacular: The robots get a massively pixelated image of the world in front of them and, nonetheless, are able to automatically be taught a bunch of refined behaviors. Image Credit: DeekSeek 깃헙. DeepSeek-Coder-V2 모델의 특별한 기능 중 하나가 바로 ‘코드의 누락된 부분을 채워준다’는 건데요. 예를 들어 중간에 누락된 코드가 있는 경우, 이 모델은 주변의 코드를 기반으로 어떤 내용이 빈 곳에 들어가야 하는지 예측할 수 있습니다. 두 모델 모두 DeepSeekMoE에서 시도했던, DeepSeek만의 업그레이드된 MoE 방식을 기반으로 구축되었는데요. 거의 한 달에 한 번 꼴로 새로운 모델 아니면 메이저 업그레이드를 출시한 셈이니, 정말 놀라운 속도라고 할 수 있습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek-Coder-V2는 이전 버전 모델에 비교해서 6조 개의 토큰을 추가해서 트레이닝 데이터를 대폭 확충, 총 10조 2천억 개의 토큰으로 학습했습니다. DeepSeek Coder는 Llama 2의 아키텍처를 기본으로 하지만, 트레이닝 데이터 준비, 파라미터 설정을 포함해서 처음부터 별도로 구축한 모델로, ‘완전한 오픈소스’로서 모든 방식의 상업적 이용까지 가능한 모델입니다. 바로 이어서 2024년 2월, 파라미터 7B개의 전문화 모델, DeepSeekMath를 출시했습니다.

그리고 2024년 3월 말, DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 이렇게 하는 과정에서, 모든 시점의 은닉 상태들과 그것들의 계산값을 ‘KV 캐시 (Key-Value Cache)’라는 이름으로 저장하게 되는데, 이게 아주 메모리가 많이 필요하고 느린 작업이예요. DeepSeekMoE는 각 전문가를 더 작고, 더 집중된 기능을 하는 부분들로 세분화합니다. 더 적은 수의 활성화된 파라미터를 가지고도 DeepSeekMoE는 Llama 2 7B와 비슷한 성능을 달성할 수 있었습니다. 이 소형 모델은 GPT-4의 수학적 추론 능력에 근접하는 성능을 보여줬을 뿐 아니라 또 다른, 우리에게도 널리 알려진 중국의 모델, Qwen-72B보다도 뛰어난 성능을 보여주었습니다. 자, 이제 이 글에서 다룰 마지막 모델, DeepSeek-Coder-V2를 살펴볼까요? DeepSeek-Coder-V2 모델은 16B 파라미터의 소형 모델, 236B 파라미터의 대형 모델의 두 가지가 있습니다. 물론 허깅페이스에 올라와 있는 모델의 수가 전체적인 회사의 역량이나 모델의 수준에 대한 직접적인 지표가 될 수는 없겠지만, DeepSeek이라는 회사가 ‘무엇을 해야 하는가에 대한 어느 정도 명확한 그림을 가지고 빠르게 실험을 반복해 가면서 모델을 출시’하는구나 짐작할 수는 있습니다. ‘공유 전문가’는 위에 설명한 라우터의 결정에 상관없이 ‘항상 활성화’되는 특정한 전문가를 말하는데요, 여러 가지의 작업에 필요할 수 있는 ‘공통 지식’을 처리합니다. 이 Lean 4 환경에서 각종 정리의 증명을 하는데 사용할 수 있는 최신 오픈소스 모델이 DeepSeek-Prover-V1.5입니다. 236B 모델은 210억 개의 활성 파라미터를 포함하는 DeepSeek의 MoE 기법을 활용해서, 큰 사이즈에도 불구하고 모델이 빠르고 효율적입니다.